Welcome to veni’s documentation!
A Python package for deep learning using forward automatic differentiation based on JAX.
Table of contents
Description
veni is a Python package, built on JAX, providing an easy interface to deal with Neural Network using forward automatic differention. Inspired by the very recent (2021) papers of Atılım Günes Baydin et al. and David Silver et al., we have decided to implement a package able to reproduce the results, and give freedom to further investigate this new emerging area of AI.
Dependencies and installation
veni requires requires jax
, jaxlib
, torch
, numpy
,
sphinx
(for the documentation). The code is tested for Python 3,
while compatibility of Python 2 is not guaranteed anymore. It can be
installed directly from the source code.
Installing from source
The official distribution is on GitHub, and you can clone the repository using
> git clone https://github.com/DSSC-projects/veni
You can also install it using pip via
> python -m pip install git+https://github.com/DSSC-projects/veni
Documentation
veni uses Sphinx for code documentation. You can view the documentation online here. To build the html version of the docs locally simply:
cd docs
make html
The generated html can be found in docs/build/html
. Open up the
index.html
you find there to browse.
Examples and Tutorials
The directory examples contains some examples showing how to use veni. In particular we show how to create simple deep learning architectures, how to train via forward automatic differentiation an architecture, and finally how to sample differently candidate directions.
Benchmarks
The directory benchmarks contains some important benchmarks showing how to reproduce Atılım Günes Baydin et al. results by using the simple veni interface. We further provide logs for efficient analysis of the data. Further benchmark involving directions and optimizers are also available for testing.
References
To implement the package we follow these works:
A. G. Baydin, B. A. Pearlmutter, D. Syme, F. Wood, and P. Torr. _Gradients without back- propagation, 2022
D. Silver, A. Goyal, I. Danihelka, M. Hessel, and H. van Hasselt. _Learning by directional gradient descent. In International Conference on Learning Representations, 2022
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs (0.3.13) [Computer software]. http://github.com/google/jax
Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alch ́e-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.
How to contribute
We’d love to accept your patches and contributions to this project. There are just a few small guidelines you need to follow.
Submitting a patch
It’s generally best to start by opening a new issue describing the bug or feature you’re intending to fix. Even if you think it’s relatively minor, it’s helpful to know what people are working on. Mention in the initial issue that you are planning to work on that bug or feature so that it can be assigned to you.
Follow the normal process of forking the project, and setup a new branch to work in. It’s important that each group of changes be done in separate branches in order to ensure that a pull request only includes the commits related to that bug or feature.
To ensure properly formatted code, please make sure to use 4 spaces to indent the code. The easy way is to run on your bash the provided script: ./code_formatter.sh. You should also run pylint over your code. It’s not strictly necessary that your code be completely “lint-free”, but this will help you find common style issues.
Do your best to have well-formed commit messages for each change. This provides consistency throughout the project, and ensures that commit messages are able to be formatted properly by various git tools.
Finally, push the commits to your fork and submit a pull request. Please, remember to rebase properly in order to maintain a clean, linear git history.
Citations
If you are considering using veni on your reaserch please cite us:
APA:
Tomba, F., Coscia, D., & Pierro, A. (2022). veni (Version 0.0.1) [Computer software]. https://github.com/DSSC-projects/veni
BibTex:
@software{Tomba_veni_2022,
author = {Tomba, Francesco and Coscia, Dario and Pierro, Alessandro},
month = {6},
title = {{veni}},
url = {https://github.com/DSSC-projects/veni},
version = {0.0.1},
year = {2022}
}
License
See the LICENSE file for license rights and limitations (MIT).
See more…
Installation
veni is currently available on GitHub and can be installed directly from source using:
git clone https://github.com/DSSC-projects/veni
or by:
python -m pip install git+https://github.com/DSSC-projects/veni
Reference manual
Modules
veni.function module
- class veni.function.LeakyReLu
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.LogSigmoid
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.LogSoftmax
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.ReLU
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.Sigmoid
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.Softmax
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.Softplus
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
- class veni.function.Tanh
Bases:
veni.module.Activation
- forward(x, params=None)
- generate_parameters()
veni.functiontools module
- veni.functiontools.CrossEntropy(y, y_hat)
CrossEntropy loss EXPECTS: tensor of the shape (N, k1, k2, …, kn) where N is the number of examples in the batch
- Parameters
y (jnp.array) – Ground truth tensor
y_hat (jnp.array) – Model predictions
- Returns
Loss for each batch
- Return type
float
- veni.functiontools.LazyCrossEntropy(y, y_hat)
CrossEntropy loss This cross entropy implementationmay suffer numerical instabilities depending on the specific problem, consider using ‘CrossEntropy’.
EXPECTS: tensor of the shape (N, k1, k2, …, kn) where N is the number of examples in the batch
- Parameters
y (jnp.array) – Ground truth tensor
y_hat (jnp.array) – Model predictions
- Returns
Loss for each batch
- Return type
float
- veni.functiontools.MSE(y, y_hat)
Mean square error loss, reduction mean
- Parameters
y (jnp.array) – Ground truth tensor
y_hat (jnp.array) – Model predictions
- Returns
Loss for each batch
- Return type
float
- veni.functiontools.leaky_relu(x)
Applies the leaky rectified linear unit function element-wise
- Parameters
x (jax.array) – input
negative_slope (float, optional) – negative slope, defaults to 0.01
- Returns
leaky rectified linear unit on x
- Return type
jax.array
- veni.functiontools.log_sigmoid(x)
Applies the logarithmic sigmoid function element-wise
- Parameters
x (jax.array) – input
- Returns
logarithmic sigmoid on x
- Return type
jax.array
- veni.functiontools.log_softmax(x)
Applies the logarithmic softmax function element-wise.
- Parameters
x (jax.array) – input
- Returns
logarithmic softmax on x
- Return type
jax.array
- veni.functiontools.relu(x)
Applies the rectified linear unit function element-wise
- Parameters
x (jax.array) – input
- Returns
rectified linear unit on x
- Return type
jax.array
- veni.functiontools.sigmoid(x)
Applies the sigmoid function element-wise
- Parameters
x (jax.array) – input
- Returns
sigmoid on x
- Return type
jax.array
- veni.functiontools.softmax(x)
Applies the softmax function element-wise.
- Parameters
x (jax.array) – input
- Returns
softmax on x
- Return type
jax.array
- veni.functiontools.softplus(x)
Applies the softplus function element-wise. For numerical stability the implementation reverts to the linear function when input*beta > threshold.
- Parameters
x (jax.array) – input
beta (int, optional) – paramter, defaults to 1
threshold (int, optional) – threshold, defaults to 20
- Raises
ValueError – beta value must be greater than zero
- Returns
softplus on x
- Return type
jax.array
- veni.functiontools.tanh(x)
Applies the tanh function element-wise
- Parameters
x (jax.array) – input
- Returns
tanh on x
- Return type
jax.array
veni.module module
- class veni.module.Activation(f)
Bases:
abc.ABC
- abstract forward(x, params=None)
- abstract generate_parameters()
- class veni.module.Sampler
Bases:
abc.ABC
veni.net module
- class veni.net.AvgPool2D(kernel_size, stride=None, padding=None)
Bases:
veni.module.Module
- forward(x, params=None)
Public forward method for Conv layer
- Parameters
params (jnp.array) – Parameters of the layer
x (jnp.array) – Input
- Returns
Activation
- Return type
jnp.array
- generate_parameters()
Generate parameters for current layer
- Returns
weight and bias tensors N(0,1) initialized
- Return type
jnp.array
- property input
- property key
- property output
- class veni.net.Conv2D(inChannels, outChannels, kernelSize, stride, padding, key)
Bases:
veni.module.Module
- forward(x, params)
Public forward method for Conv layer
EXPECTS: x: tensor of the form NCHW (images)x(channels)x)(height)x(width) params[0]: tensor of the form OIHW (outputCh)x(inputCh)x(kernelHeight)x(kernelWidth) params[1]: bias
- Parameters
params (jnp.array) – Parameters of the layer
x (jnp.array) – Input
- Returns
Activation
- Return type
jnp.array
- generate_parameters()
Generate parameters for current layer
- Returns
weight and bias tensors N(0,1) initialized
- Return type
jnp.array
- property input
- property key
- property output
- class veni.net.Flatten
Bases:
veni.module.Module
- forward(x, params=None)
returns flattened tensor
- Returns
_description_
- Return type
_type_
TODO: optimize that
- generate_parameters()
Generate parameters for current layer
- Returns
weight and bias tensors N(0,1) initialized
- Return type
jnp.array
- property input
- property key
- property output
- class veni.net.Linear(input, output, key, bias=True)
Bases:
veni.module.Module
- forward(x, params)
Public forward method for Linear layer
- Parameters
params (jnp.array) – Parameters of the layer
x (jnp.array) – Input
- Returns
Activation
- Return type
jnp.array
- generate_parameters()
- property input
- property key
- property output
- class veni.net.MLP(layers, func, key)
Bases:
veni.module.Module
- forward(x, params)
- generate_parameters()
- property key
- property layers
- single_forward(x, params)
- class veni.net.MaxPool2D(kernel_size, stride=None, padding=None)
Bases:
veni.module.Module
- forward(x, params=None)
Public forward method for Conv layer
- Parameters
params (jnp.array) – Parameters of the layer
x (jnp.array) – Input
- Returns
Activation
- Return type
jnp.array
- generate_parameters()
Generate parameters for current layer
- Returns
weight and bias tensors N(0,1) initialized
- Return type
jnp.array
- property input
- property key
- property output
- class veni.net.Sequential(list)
Bases:
veni.module.Module
- forward(x, params)
Forward method for sequential object
- Parameters
params (jnp.array) – _description_
x (jnp.array) – _description_
- Returns
activation
- Return type
jnp.array
- generate_parameters()
Generate parameters for layers in sequential
- Returns
_description_
- Return type
jnp.array
veni.optim module
- class veni.optim.Adam(params, beta1=0.9, beta2=0.999, eta=0.001)
Bases:
veni.module.Optimizer
- update(params, grads)
Update method for Adam
- Parameters
params (jax.array) – paramters to optimize
grad (jax.array) – loss gradient
- Returns
optimized parameters
- Return type
jax.array
- class veni.optim.NormalLikeSampler
Bases:
veni.module.Sampler
- class veni.optim.RademacherLikeSampler
Bases:
veni.module.Sampler
- class veni.optim.SGD(params, momentum=0, dampening=0, eta=0.001)
Bases:
veni.module.Optimizer
- update(params, grad)
Update method for SGD
- Parameters
params (jax.array) – paramters to optimize
grad (jax.array) – loss gradient
- Returns
optimized parameters
- Return type
jax.array
- class veni.optim.TruncatedNormalLikeSampler(lower=- 1, upper=1)
Bases:
veni.module.Sampler
- class veni.optim.UniformLikeSampler
Bases:
veni.module.Sampler
- veni.optim.grad_fwd(params, x, y, loss, dirs=1, sampler=<veni.optim.NormalLikeSampler object>)
Function to calculate the gradient in forward mode using 1 or more directions
- Parameters
params (List) – Parameters of the model
x (jnp.array) – Input of the model
y (jnp.array) – labels
loss (Callable) – loss function
dirs (int, optional) – Number of directions used to calculate the gradient, defaults to 1
sampler (Class, optional) – Sampler used to sample gradient direction for each layer, defaults to NormalLikeSampler()
- Returns
Gradient as list of all components for each layer
- Return type
List
- veni.optim.plist_reduce(vs, js)
Multiply the jacobian vector product with the tangent directions
- Parameters
vs (list(tuple(jnp.array, jnp.array))) – tangent directions
js (float) – jacobian vector product
- Returns
multiply the jacobian vector product with the tangent directions
- Return type
list(tuple(jnp.array, jnp.array))
veni.utils module
- class veni.utils.FlattenAndCast
Bases:
object
- class veni.utils.NumpyLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None)
Bases:
Generic
[torch.utils.data.dataloader.T_co
]- batch_size: Optional[int]
- dataset: torch.utils.data.dataset.Dataset[torch.utils.data.dataloader.T_co]
- drop_last: bool
- num_workers: int
- pin_memory: bool
- pin_memory_device: str
- prefetch_factor: int
- sampler: Union[torch.utils.data.sampler.Sampler, Iterable]
- timeout: float
- veni.utils.numpy_collate(batch)
- veni.utils.one_hot(x, k, dtype=<class 'jax.numpy.float32'>)
Create a one-hot encoding of x of size k.